Energy-Dispersive X-ray Microanalysis

An Introduction

Microanalysis

Choosing technique:

- spatial resolution
- information depth
- detection limit
- qualitative or quantitative? both?
- additional information

- identification of the chemical elements in measured material (qualitative, quantitative)
- spot size ranges form 100 μm to 100 nm
- in situ measurements

Principles of the EDS technique

- easy of use, qualitative and quantitative chemical composition
- detection limits ca. 0.3 wt.%
- wide detection range of elements (Z > 4)
- fast in comparison with other techniques
- non-destructive
- mapping measurements
- energy resolution < 130eV
- spatial and depth resolution few microns

Generation of X-Rays

- electron beam interaction with atoms
- spatial resolution of few microns
- size variation of interaction volume
- Bremsstrahlung and Characteristic X-Rays (Duane-Hunt limit)
- EDS spectrum contain combined X-Ray radiation
- "whale" spectrum

Generation of X-Rays

- Bohr model of atom
- inner shells K, L, M
- K shell highest ionization energy
- two stage process
- each element has specific ionization energy

K (H-He)

L (Li to Ne)

M (Na to Ar)

Orbitals or e- shells

e- from

Atom

0

- Siegbahn notation
- EK > EL > EM

Moseley's law

$$E = C_1 (Z - C_1)^2$$

Generation of X-Rays

Factors that can influence intensity of the spectrum:

- detector type
- sample type
- concentration
- beam current
- accelerating voltage (5 30 keV)

optimum value ~ 2.7

Detection of X-Rays

- creation of a series of electron-hole pairs
- SSD operating temp. ~ 70°C
- pulse processor removes noises
- longer process time better resolution
- "dead" time

pole piece

• analyser divide spectrum into channels

SSD

window

electron trap

collmator

energy dispersive X-ray spectrometer

- detector (semiconductor)
- pulse processor
- multi-channel analyser

first detectors – Si(Li) – 1960s nowadays – SSD

Detector:

- collimator
- electron trap
- window
- semiconductor
- electronics

Spectral Resolution

Artifacts

- internal fluorescence peak (Si signal from crystal)
- pile up (sum) peaks
- escape peaks

above 60% "dead" time

Qualitative Analysis

- accelerating voltage optimal – 20 keV enough – 8 keV
- beam current
- instrument geometry
 WD 5 mm
- sample preparation
- non-conductive samples
- overlapping peaks

Analysis procedure

- 1. Identify and label major peaks at 4 keV and above:
 - There are no M family peaks
 - There are at least two resolved peaks for both K and L families so these can be identified along with related minor peaks
 - If there are L family peaks there should be M family peaks at low energy, and these can be identified, e.g. Ta L and M families
 - If there are K family peaks there should be L family peaks at low energy, and these can be identified, e.g. Zn K and L families
 - Any unidentified peaks below 4 keV should be K family peaks, and can be identified.

Quantitative Analysis

X-ray on right is under corrected for absorption

X-rays above are over corrected for absorption

Specimen must be Homogenous over x-ray generation volume for correct answer

- standardless analysis
- the same operating parameters for qualitative and quantitative analysis
- more "careful" sample preparation (flat, polished samples)
- 2 microns particles for analysis
- carbon coating of non-conductive materials
- poor analysis of light elements (Z<11)
 - strong absorption
 - low number of electrons
- oxygen problem
- ZAF corrections

Element	Wt %	At %	K-Ratio	Z	А	F
C K O K AuM S K ClK PdL Total	87.90 5.37 0.87 0.34 1.00 4.53 100.00	94.56 4.34 0.06 0.14 0.36 0.55 100.00	0.6749 0.0101 0.0070 0.0031 0.0090 0.0371	1.0136 0.9946 0.6411 0.9313 0.8914 0.7396	0.7575 0.1889 1.2516 0.9960 1.0082 1.1064	1.0000 1.0000 1.0003 1.0065 1.0086 1.0000

Mapping

Single element map

Ca Ka1

Practical Examples

EDAX ZAF Quantification (Standardless) Element Normalized SEC Table : Default

Element	Wt %	At %	K-Ratio	Z	A	F
C K O K AuM S K PdL Total	87.83 5.76 1.78 0.35 4.29 100.00	94.57 4.65 0.12 0.14 0.52 100.00	0.7410 0.0109 0.0143 0.0032 0.0351	1.0141 0.9950 0.6416 0.9319 0.7400	0.8320 0.1909 1.2490 0.9881 1.1046	1.0000 1.0000 1.0001 1.0044 1.0000
Element	Net Int	e. Bk	gd Inte.	Inte. Er	ror	P/B
C K O K AuM S K PdL	5208.56 106.96 41.02 23.91 97.41		7.91 15.66 54.78 53.33 53.23	0.16 1.30 3.55 5.67 1.74	65	8.18 6.83 0.75 0.45 1.83

EDAX ZAF Quantification (Standardless) Element Normalized SEC Table : Default

Element	Wt %	At %	K-Ratio	Ζ	А	F
СК	1.86	5.65	0.0072	1.1857	0.3264	1.0004
ОК	23.89	54.48	0.0414	1.1624	0.1490	1.0000
AuM	16.19	3.00	0.1327	0.7653	1.0700	1.0006
S K	0.72	0.82	0.0063	1.1052	0.7797	1.0096
AqL	18.87	6.39	0.1616	0.8774	0.9638	1.0122
CaK	2.37	2.15	0.0229	1.0796	0.8770	1.0228
TiK	36.10	27.50	0.3287	0.9875	0.9216	1.0003
Total	100.00	100.00				